(4x^2)+(41)=81

Simple and best practice solution for (4x^2)+(41)=81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2)+(41)=81 equation:



(4x^2)+(41)=81
We move all terms to the left:
(4x^2)+(41)-(81)=0
We add all the numbers together, and all the variables
4x^2-40=0
a = 4; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·4·(-40)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*4}=\frac{0-8\sqrt{10}}{8} =-\frac{8\sqrt{10}}{8} =-\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*4}=\frac{0+8\sqrt{10}}{8} =\frac{8\sqrt{10}}{8} =\sqrt{10} $

See similar equations:

| 40c+26=180 | | 4s+26=180 | | 2.7x+8.4=10.5x47.4 | | 14+-7a=35 | | 48+2x+6=180 | | -63-8x=-5x | | 2x+-6=3x-14 | | 4(w-2)-3=2(w-6) | | 53+64+(3x+6)=180 | | −2(x−3)−4=3x−5(x−1) | | 6x+0.4=4.2 | | 53+64+3x+6=180 | | 1/2b-8=0 | | x=(9x-31)+43 | | x^2+(x+4)^2=136 | | 25x+6x+50=x | | x/32=10/30 | | -2x+10x-3x+15=15 | | -10=c-5 | | 52x+5=16x-2 | | -15=9e-4+10e | | 2(w-2)-3=2(w-6) | | (x+1)=x+4 | | 2r+8=13 | | (x-30)(x-30)=0 | | 9x-1=5x+3x-8 | | -2x+5+10x-3×+15=15 | | 4(a+4)-2=2 | | 69x+5=90x-6 | | 16–y=26 | | 2x+7-5x=-5 | | 30-5y=14 |

Equations solver categories